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Abstract

Presented is a novel algorithmic method for simulating complex fluids,
for instance multiphase single component fluids and molecular systems.
The algorithm falls under a class of single-instruction multiple-data com-
putation known as lattice-gases, and therefore inherits exact computabil-
ity on a discrete spacetime lattice. Our contribution is the use of nonlocal
interactions that allow us to model a richer set of physical dynamics, such
as crystallization processes, yet to do so in a way that remains locally
computed. A simple computational scheme is employed that allows all
the dynamics to be computed in parallel with two additional bits of local
site data, for outgoing and incoming messengers, regardless of the number
of long-range neighbors. The computational scheme is an efficient decom-
position of a lattice-gas with many neighbors. It is conceptually similar
to the idea of virtual intermediate particle momentum exchanges that is
well known in particle physics. All 2-body interactions along a particular
direction define a spatial partition that is updated in parallel. Random
permutation through the partitions is sufficient to recover the necessary
isotropy as long as enough momentum exchange directions are used. The
algorithm is implemented on the CAM-8 prototype.
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1 Introduction

To illustrate the how one may implement a lattice-gas with long-range interac-

tions, let us consider for simplicity a two-dimensional example with a system

having only one interaction range and consider only the case of an attractive

interaction. The more general case of multiple interaction ranges with both re-

pulsive and attractive interactions and in higher dimensions will follow directly.

Specifically, we discuss our new molecular dynamics lattice-gas algorithm that

uses eight interaction ranges and both repulsive and attractive interactions to

approximate a Lenord-Jones intermolecular potential.

Our long-range lattice-gas has been implemented on the MIT cellular au-

tomata machine prototype, the CAM-8. Consequently, we first give a brief

description of the CAM-8 architecture. We next give a brief description of what

a lattice-gas automaton is and explain why it is an exactly computable represen-

tation of a dynamical system. One of the principle requirements for a lattice-gas

with microscopic finite-point group symmetry to give rise to macroscopic con-

tinuous rotational symmetry is that the underlying lattice must be isotropic.

Therefore we describe what it means for a lattice to be isotropic. Working

in two-dimensions is much easier that working in three, both for implement-

ing computer models and for describing them. For this reason we present our

long-range lattice-gas algorithm in two-dimensions on the triangular lattice.

When introduced to the triangular lattice-gas model for the first time, one

inevitably asks the following question: Why does the discrete dynamics fail to

reproduce the correct continuum hydrodynamic limit when implemented on a
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square lattice? One finds that four momentum states are insufficient by noting

that the derivation of the Navier-Stokes equation relies on the expansion of the

momentum flux density tensor in terms of the isotropic tensor E4 which itself

could be expanded in products of two-dimensional Kronecker deltas, given below

in (10). For the square lattice case, the lattice vectors are orthogonal and E4

cannot be decomposed into two-dimensional Kronecker deltas. Instead

E4
ijkl|B=4 = 2δijkl

where δijkl is a four-dimensional Kronecker delta illustrating the lack of isotropy

of the momentum flux density on a square lattice-gas. Since five nearest neigh-

bors is not space filling, the next possible choice is six or the triangular lat-

tice. The simplest discrete dynamics in two-dimensions is known as a hexag-

onal lattice-gas or an FHP lattice-gas, after its originators Uriel Frisch, Brosl

Hasslacher, and Yves Pomeau [1]. Since the long-range lattice-gas still retains

local collisions, we present the simple FHP-model here for completeness. Next

we introduce the long-range 2-body interaction, restricting ourselves to central-

body attractive interactions, for the sake of simplicity. We discuss two different

bound states, the bounce-back orbit and the clockwise orbit.

When implementing lattice-gas algorithms it is often useful try to find eco-

nomical ways of expressing the collisions or interactions so as to reduce the size of

a look-up table or reduce the depth of the logical representation of the algorithm.

To this end we briefly discuss some symmetries inherent in long-range interac-

tions, in particular we introduce partity and conjugation symmetries. Finally,

we discuss our implementation of a multi-long-range lattice-gas. Remarkably,
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this methodology allows us to model solid-state dynamics and as such offers an

alternative to the usual method of computational molecular dynamics.

2 The Cellular Automata Machine CAM-8

Figure 1: MIT Laboratory for Computer Science cellular automata machine CAM-8. This 8
module prototype can evolve a D-dimensional cellular space with 32 million sites where each
site has 16 bits of data with a site update rate of 200 million per second.

The cellular automata machine CAM-8 architecture devised by Norman Mar-

golus of the MIT Laboratory for Computer Science [2, 3] is the latest in a line of

cellular automata machines developed by the Information Mechanics Group at

MIT [4, 5, 6]. It is optimized for performing lattice-gas simulations. The CAM-

8 architecture itself is a simple abstraction of lattice gas dynamics. Lattice gas

data streaming and collisions are directly implemented in the architecture. The
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communication network is a cartesian three-dimensional mesh. Crystallographic

lattice geometries can be directly embedded into the CAM-8. Each site of the

lattice has a certain number of bits (a multiple of 16) which we refer to as a

“cell”. Each bit of the cell, or equivalently each bit plane of the lattice, can

be translated through the lattice in any arbitrary direction. The translation

vectors for the bit planes are termed “kicks”. The specification of the x,y, and

z components of the kicks for each bit plane (or hyperplane) exactly defines

the lattice. The kicks can be changed during the simulation. Thus, the data

movement in the CAM-8 is general. Once the kicks are specified, the coding

of the lattice-gas streaming is completed. In effect, the kicks determine all the

global permutations of the data.

Local permutations of data occur within the cells. These permutations are

the computational metaphor for physical collisions between particles.1 All local

permutations are implemented in look-up tables. That is, all possible physical

events with a certain input configuration and a certain output configuration

are precomputed and stored in SRAM, for fast table look-up. The width of the

CAM-8 look-up tables are limited to 16-bits, or 64K entries. This is a reasonable

width satisfying the opposing considerations of model complexity versus memory

size limitations for the SRAM. Site permutations of data wider than 16-bits

must be implemented in several successive table look-up passes. Since the look-

up tables are double buffered, a scan of the space can be performed while a new

look-up table is loaded for the next scan.
1Locally, the CAM-8 is not limited to performing only permutations, it can do general

mappings. However, since we are interested in only particle conserving reversible dynamics,
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Figure 2: CAM-8 system diagram. (a) A single processing node, with DRAM site data
flowing through an SRAM lookup table and back into DRAM. (b) Spatial array of CAM-8
nodes, with nearest-neighbor (mesh) interconnect (1 wire/bit-slice in each direction.

Figure 2 is a schematic diagram of a CAM-8 system. On the left is a sin-

gle hardware module—the elementary “chunk” of the architecture. On the

right is an indefinitely extendable array of modules (drawn for convenience as

two-dimensional, the array in normally three-dimensional). A uniform spatial

calculation is divided up evenly among these modules, with each module sim-

ulating a volume of up to millions of fine-grained spatial sites in a sequential

fashion. In the diagram, the solid lines between modules indicate a local mesh

interconnection. These wires are used for spatial data movements. There is

also a tree network (not shown) connecting all modules to the front-end host,

a SPARC workstation with a custom SBus interface card, controls the CAM-8.

It downloads a bit-mapped pattern as the initial condition for the simulations.

It also sends a “step-list” to the CAM-8 to specify the sequence of kicks and

permutations are sufficient.
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scans that evolve the lattice-gas in time. One can view the lattice-gas simu-

lation in real-time since a custom video module captures site data for display

on a VGA monitor, a useful feature for lattice-gas algorithm development, test

and evaluation. The CAM-8 has built-in 25-bit event counters allowing real-

time measurements without slowing the lattice-gas evolution. This feature is

used to do real-time coarse-grain block averaging of the lattice-gas number vari-

ables and to compute the components of the momentum vectors for each block.

The amount of coarse-grained data is sufficiently small to be transferred back

to the front-end host for graphical display as an evolving flow field within an

X-window.

3 Lattice-Gas Automaton: An Exactly Computable
Dynamical System

A boolean formulation of an exactly computable dynamical system, known as

a lattice-gas, may be stated in a way that is consistent with the Boltzmann

equation for kinetic transport. In essence the lattice-gas dynamics are a sim-

plified form of molecular transport as we restrict ourselves to a cellular phase

space. The macroscopic equations, in particular the continuity equation and

the Navier-Stokes equation, are obtained by coarse-graining over a discrete mi-

crodynamical transport equation for number boolean variables. The scheme

employs the finite-point group symmetry of a crystallographic spatial lattice. It

is somewhat inevitable that to obtain an exactly computable representation of

fluid dynamics one must perform a statistical treatment over discrete number
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variables.

Before introducing the basic lattice-gas microdynamical transport equation,

let us give some notational conventions. We consider a spatial lattice with N

total sites. The fundamental unit of length is the size of a lattice cell, l, and

the fundamental unit of time, τ , is the time it takes for a speed-one particle to

go from one lattice site to a nearest neighboring site. Particles, with unit mass

m, propagate on the lattice. The unit lattice propagation speed is denoted

by c = l
τ . Particles occupy this discrete space and can have only a finite B

number of possible momenta. The lattice vectors are denoted by eai where

a = 1, 2, . . . , B. For example, for a single-speed gas on a triangular lattice,

a = 1, 2, . . . , 6. A particle’s state is completely specified at some time, t, by

specifying its position on the lattice, xi, and its momentum, pi = mceai, at that

position. The particles obey Pauli exclusion since only one particle can occupy

a single momentum state at a time. The total number of configurations per site

is 2B . The total number of possible single particle momentum states available

in the system is Ntotal = BN . With P particles in the system, we denote the

filling fraction by d = P
Ntotal

.

The number variable, denoted by na(x, t), takes the value of one if a particle

exists at site x at time t in momentum state mcêa, and takes the value of zero

otherwise. The evolution of the lattice-gas can then be written in terms of na as

a two-part process: a collision and streaming part. The collision part reorders

the particles locally at each site.

n′
a(x, t) = na(x, t) + Ωa(~n(x, t)), (1)
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where Ωa represents the collision operator and in general depends on all the

particles, ~n at the site. So as a short-hand we suppress the index on the occu-

pation variable when it is an argument of Ωa(~n(x, t)) to represent this general

dependence. In the streaming part of the evolution the particle at position x

“hops” to its neighboring site at x + lêa and then time is incremented by τ

n′
a(x + lêa, t + τ) = na(x, t) + Ωa(~n(x, t)). (2)

Equation (2) is the lattice-gas microdynamical transport equation of motion.

The collision operator can only permute the particles locally on the site since

we wish the local particle number to be conserved before and after the collision.

That is,

n(x, t) =
∑

a

n′
a(x, t) =

∑
a

na(x, t). (3)

Equation (3) defines the local number density. Summing (2) over lattice direc-

tions then implies the following constraint on the collision operator

∑
a

Ωa = 0. (4)

We may define the local momentum as

pi(x, t) = mc
∑

a

eain
′
a(x, t) = mc

∑
a

eaina(x, t), (5)

which of course must also be conserved before and after a collision. Again, this

imposes a constraint on the collision operator.

∑
a

eaΩa = 0. (6)

As a matter of notation it should be understood that whenever a directionally

dependent quantity is written, its subscripted index is taken modulo B. Using
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the number variable, for example, it is understood that

na+b = n mod B(a+b). (7)

As a short hand, a negative indice will represent the antiparallel direction, so

since êa+ B
2

= −êa we may write

n−a = na+ B
2
. (8)

4 Isotropic Lattice Tensors

We construct an n-th rank tensor composed of a product of lattice vectors [7]

E(n) = Ei1...in =
∑

a

(ea)i1 · · · (ea)in
, (9)

where a = 1, . . . , B. All odd rank E vanish. We wish to express E(2n) in terms

of Kronecker deltas, δij = 1 for i = j and zero otherwise. We can turn this

problem of expressing the E-tensors in terms of products of Kronecker deltas

into a problem of combinatoric counting. We use the following tensors

∆2
ij = δij (10)

∆4
ijkl = δijδkl + δikδjl + δilδkj (11)

and so forth. Then we know that if E is isotropic it must be proportional to ∆

E(2n) ∝ ∆(2n) (12)

and that the constant of proportionality may be obtained by counting the num-

ber of ways we could write a term comprising a product of n Knonecker deltas.

Consider for example the case n = 2. Since the Knonecker delta is symmetric in
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its indices, the following four products are identical: δijδkl = δijδlk = δjiδkl =

δjiδlk. The degeneracy is 22. Furthermore, the order of the Kronecker deltas

also doesn’t matter since they commute; that is, δijδkl = δklδij . The degen-

eracy is 2!. For the case where n is arbitrary, there are 2n identical ways of

writing the product of n Kronecker deltas. For each choice of indices, there are

an additional n! number of ways of ordering the products. Therefore, the total

number of degeneracies equals 2nn! = (2n)!!. The total number of permutations

for 2n indices equals (2n)!. So from this counting procedure we know that ∆(2n)

consists of a sum of (2n!)
(2n)!! = (2n − 1)!! terms.

The following relations will be very useful throughout later developments

E1 = 0 (13)

E2 =
B

D
δij (14)

E3 = 0 (15)

E4 =
B

D(D + 2)
(δijδkl + δikδjl + δilδkj) (16)

In general, the lattice tensors are

E2n+1 = 0 (17)

E2n =
B

D(D + 2) · · · (D + 2n − 2)
∆2n (18)

5 Triangular Lattice

In a triangular lattice there are six vectors that we enumerate in this section by

the following convention

êa = −
(
sin

πa

3
, cos

πa

3

)
, (19)
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where a = 1, 2, . . . , 6. The spatial coordinates of the lattice sites may be ex-
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Figure 3: (a) Lattice vector label convention; (b) Hexagonal lattice convention with lattice
directions a = 3 up and a = 6 down. Coordinates above the lattice nodes are (i, j) memory
array indices.

pressed as follows

xij =

(√
3

2
j, i − 1

2
(j mod 2)

)
(20)

where i and j are rectilinear indices which specify the data memory array loca-

tion used to store the lattice-gas site data.

Let s = (j mod 2)(r mod 2). Given a particle at site (i, j), it may be shifted

to a site r lattice units away to a remote site (i′, j′) by the following mapping

(i′, j′)1 =
(

i +
r + 1

2
− s, j − r

)
(21)

(i′, j′)2 =
(
i − r

2
− s, j − r

)
(22)

(i′, j′)3 = (i − r, j) (23)

(i′, j′)4 =
(

i +
r + 1

2
− s, j + r

)
(24)
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(i′, j′)5 =
(
i − r

2
− s, j + r

)
(25)

(i′, j′)6 = (i + r, j) (26)

where (i′, j′)a denotes the shifted site, i.e. (i, j) → (i′, j′) with a shift along

vector ~r = rêa and where division by 2 is considered integer division.

6 Local Collision Rules

In two-dimensions we may use a triangular lattice, with six bits per site encoding

the occupation numbers of the six possible momentum states. Let na be the

input bits and n′
a be the output bits of a local collision. A general collision

operator is constructed as follows

Ωa =
∑
{ζi}

αQa({ζi}), (27)

where {ζi} is a set of occupied particle states and α = ±1 is a scalar coefficient

and where each term in the sum is written in factorized form as

Qa(i1, . . . , ik) =
na+i1

1 − na+i1

· · · na+ik

1 − na+ik

B∏
j=1

(1 − na+j). (28)

Then the FHP collision operator is the following:

ΩFHP
a =

1
2
Qa(1, 4) +

1
2
Qa(2, 5) − Qa(0, 3) + Qa(1, 3, 5) − Qa(0, 2, 4) (29)

Ω0 =
1
2
n1n4(1 − n0)(1 − n2)(1 − n3)(1 − n5) +

1
2
n2n5(1 − n0)(1 − n1)(1 − n3)(1 − n4) −

n0n3(1 − n1)(1 − n2)(1 − n4)(1 − n5) +

n1n3n5(1 − n0)(1 − n2)(1 − n4) −

n0n2n4(1 − n1)(1 − n3)(1 − n5)
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Table 1: Simple right-handed collision table

n0 n1 n2 n3 n4 n5 n′
0 n′

1 n′
2 n′

3 n′
4 n′

5
1 0 0 1 0 0 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1 0 0 1 0
1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 1 0 1 1 0 1 0 1 0

Table 2: Simple left-handed collision table

n0 n1 n2 n3 n4 n5 n′
0 n′

1 n′
2 n′

3 n′
4 n′

5
1 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 1 0 1 1 0 1 0 1 0

Note that it is sufficient to give only Ω0 since the other components of the

collision operator can be obtained simply by incrementing the indices of Ω0

owing to the six-fold symmetry of the collisions. The factors of one-half in (29)

are transition probabilities for the 2-body collisions, indicating a coin toss is

performed to choose between even or odd chirality.

The possible two-body and three-body collisions represented by (29) are

illustrated in figure (4). For two-dimensional flow, there are four invariants,

the mass, two components of the momentum, and the energy. With only the 2-

body collision in figure (4), there is an additional invariant: the difference in the

particle number along each of the three lattice directions. The 3-body collisions

in figure (4) were include in the FHP-model to remove this spurious invariant.

Consequently, the collisions enumerated in figure (4) are the minimally sufficient
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1 0 0 1 0 0 -> 0 0 1 0 0 1 
 
0 1 0 0 1 0 -> 1 0 0 1 0 0 
  
0 0 1 0 0 1 -> 0 1 0 0 1 0 
 

1 0 0 1 0 0 ->  0 1 0 0 1 0 
 
0 1 0 0 1 0 ->  0 0 1 0 0 1 
  
0 0 1 0 0 1 -> 1 0 0 1 0 0  
 

1 0 1 0 1 0 -> 0 1 0 1 0 1 
  
0 1 0 1 0 1 -> 1 0 1 0 1 0  

Even Chirality Odd Chirality 

Figure 4: Enumeration of FHP 2-body collisions, even and odd chirality, and 3-body colli-
sions.

set to produce hydrodynamic behavior in the continuum limit.

7 Long-Range 2-Body Interactions

r 0 

r1 r2 

(a) (b) (c) 

x x’ x x’ 

Figure 5: Simple bound-state orbits due to a long-range attractive interaction where the
dotted path indicates the particle’s closed trajectory: (a) partition directions; (b) bounce-back
orbit with |∆p| = 2 and zero angular momentum; and (c) clockwise orbit with |∆p| = 1 and
one unit of angular momentum. Head of the dashed arrows indicates particles entering the
sites of partition r0 at time t. Tail of the black arrows indicates particles leaving those sites
at time t + τ . The counter-clockwise orbit is not shown.

An interparticle potential, V (x − x′), acts on particles spatially separated

by a fixed distance, x − x′ = r. An effective interparticle force is caused by a

non-local exchange of momentum. Momentum conservation is violated locally,

yet it is exactly conserved in the global dynamics.
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Table 3: Lattice vector components

a x-component y-component
0 -1 0
1 − 1

2

√
3

2
2 1

2

√
3

2
3 1 0
4 1

2 −
√

3
2

5 − 1
2 −

√
3

2

For the case of an attractive interaction, there exists a bound states in which

two particles orbit one another. Since the particle dynamics are constrained by

a crystallographic lattice we expect polygonal orbits. In figure 5 we have de-

picted two such orbits for a hexagonal lattice-gas. The range of the interaction is

r. Two-body single range attractive interactions are depicted in figures 5b and

5c, the bounce-back and clockwise orbits respectively. Momentum exchanges

occur along the principle directions. The interaction potential is not spherically

symmetric, but has an angular anisotropy. In general, it acts only on a finite

number of points on a shell of radius r
2 . The number of lattice partitions neces-

sary per site is half the lattice coordination number, since two particles lie on a

line. Though microscopically the potential is anisotropic, in the continuum limit

obtained after coarse-grain averaging, numerical simulation indicates isotropy

is recovered.
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8 A Simple Example: Bounce-Back Orbit

A long-range lattice-gas of the type we are considering still possesses the usual

local dynamics of a hydrodynamic lattice-gas. To extend the local lattice-gas

update rules to include long-range interactions, we use two additional bits of

local site data. This will allow us to implement a long-range interaction using

strictly local updating and therefore our algorithm will still be parallelizable

just as a usual local lattice-gas. The two additional bits will denote the occupa-

tion numbers of messenger particles, or “photons”. The idea of using messenger

particles was introduced by Appert et al.[8]. We have two types of messen-

ger states, to represent incoming and outgoing conditions, and we denote the

messengers as zl and zr.

Now for the simplest long-range lattice-gas model, we therefore use eight bits

of local site data. Since long-range interactions occur between remote spatial

sites, say ~x and ~x′, the messenger particles will travel either parallel or antipar-

allel to the vector ~r = ~x− ~x′. All pairs of sites throughout the entire space that

are separated by vector ~r can therefore all be updated in parallel. We refer an

update step of all pairs of 2-body interactions along direction ~r as a partition,

denoted by Γr. All possible two-body interaction pairs are then computed by

performing all possible partitions of the space. So it requires many scans for

the space to perform a single long-range interaction step.

In our two-dimensional example using a triangular lattice, there are three

possible partitions. The number of partitions is never smaller than half the lat-
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tice coordination number. In the two-dimensional case, the simplest long-range

lattice-gas algorithm, though perhaps not the most efficient algorithm, is to use

three sequential scans of the space, each scan performing the updating necessary

for a single partition, see figure 5a. Often times, depending on the complexity

of the long-range interactions and the dimensionality of the lattice, it is possible

to perform simultaneous updating of multiple partitions. This of course is more

desirable yet causes more complexity. Furthermore, this updating requires an

extra pair of messenger particles for each partition to be simultaneously updated.

For simplicity, we will not deal with this case here, however our implementa-

tion on the CAM-8 does use simultaneous partition updating—repulsive and

attractive partitions are performed in parallel using four messenger bits.

Let us consider a simple example of the long-range lattice-gas algorithm,

the minimal model of Appert. Here we consider only bounce-back attractive

interactions. Suppose there is a single particle at site ~x = 0 and there is also

a single particle at site ~x′ = r̂i; that is, n0(~x) = 1, n3(~x) = 0, n0(~x′) = 0 and

n3(~x′) = 1 with all other bits at ~x and ~x′ being zero, see figure 5b. Here we are

using the bit convention shown in table 3. Then the two particles are separated

by a distance r and are moving away from each other. The attractive long-range

interaction will effectively flip their respective directions making n0(~x) = 0,

n3(~x) = 1, n0(~x′) = 1 and n3(~x′) = 0 so that the two particles will now be

moving toward each other. There is a local momentum change of 2mĉi at ~x′

and an opposite momentum change of −2mĉi at ~x. Locally momentum is not

conserved, but nonlocally it is.
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The first step of the long-range interaction sequence is to choose a partition,

say Γr, and then to emit messenger particles along the partition axis. The basic

local rule for this first step is the following: a photon is emitted at a site if

there exists a particle at that site that can partake in a long-range interaction.

Another way of expressing this rule is: send only if you can receive. Obviously,

for a particle to partake in an interaction there must be both a particle and a

hole at that site. The factorized probability of having such a situation is just

d(1 − d). So to continue with our example, for a photon to be emitted at some

site ~x parallel or antiparallel to a partition direction î, we use the following rule

zr(~x) = n0(~x)(1 − n3(~x)) (30)

zl(~x) = n3(~x)(1 − n0(~x)). (31)

Note that according to this local rule, only one photon can be created at a site,

and consequently we eliminate the possibility of a long-range interaction, say of

range 2r, mediated through a doubly occupied site. The important consequence

of the emission step, is that for two sites separated by the interaction distance,

r, if both sites send photons, both will necessarily receive them, which strictly

enforces nonlocal momentum conservation. Give and ye shall receive (provided

your’s is received). Letting za ≡ zr and z−a ≡ zl, in general we can write the

emission step of the minimal interaction as

za(~x) = n−a(~x)(1 − na(~x)), (32)

where a = 0, 1, 2 covers all the partitions.

After the emission step, follows a long-range kick of the messenger bits. In
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the simple example, all photons zl are kicked along −r̂i and all photons zr are

kicked along r̂i. In general for the long-range kick we have

z′
a(~x + rêa) = za(~x). (33)

Finally, we have the absorption step of the long-range interaction sequence.

Here the local particle momentum state is updated as the particles flip their

directions in our example

n′
3(~x) = n3(~x) + z′

l(~x)n0(~x)(1 − n3(~x)) − z′
r(~x)n3(~x)(1 − n0(~x))

(34)

n′
0(~x) = n0(~x) + z′

r(~x)n3(~x)(1 − n0(~x)) − z′
l(~x)n0(~x)(1 − n3(~x)).

(35)

Moreover, in this step all the messenger bits are set to zero throughout the

entire space. For any direction, the local absorption rule could more simply be

written as

n′
a(~x) = na(~x) + z′

−a(~x)za(~x) − z′
a(~x)z−a(~x). (36)

Substituting in (32) and (33) into (36), we have a single boolean expression in

terms of number variables for a single long-range interaction step for partition

Γr as follows

n′
a(~x) = na(~x) +

na(~x + rêa)(1 − n−a(~x + rêa))n−a(~x)(1 − na(~x)) −

n−a(~x − rêa)(1 − na(~x − rêa))na(~x)(1 − n−a(~x))

(37)
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Table 4: Long-range interaction sequence

events na(x) zl(x) zr(x) na(x′) zl(x′) zr(x′)
initial 100000 0 0 000100 0 0
emit 100000 0 1 000100 1 0
kick 100000 1 0 000100 0 1
absorb 000100 0 0 100000 0 0

For convenience we define a long-range collision operator, Pa, as follows

Pa(~x) = z′
−a(~x)za(~x), (38)

so that we may write

n′
a(~x) = na(~x) + Pa(~x) − P−a(~x). (39)

The state data for this simple example we have been considering is given in

table 4, which represents all the steps of a long-range interaction sequence for

a partition along the x-axis.

9 Another Example: Clockwise Orbit

To continue illustrating our implementation of a long-range lattice-gas, in this

section we again consider a system with a single attractive interaction of range

r, however the local momentum states participating in the interaction are not

along the partition direction. Yet in the example given here, the momentum

exchange is still along the partition direction so that the long-range interac-

tion remains a central-body one, resulting in a bound state with two particles

trapped in a clockwise orbit. (Note that the restriction to central-body forces

is not necessary, but is presented here for convenience.) In this slightly more
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complicated example, the local rules for photon emission, and absorption, (32)

and (36) respectively, have a more general form with the implication that the

emission and absorption of photons is different from the previous example of

the bounce-back orbit and should be noted when making look-up tables to do

this computation. The local photon emission rules can be written

za(~x) = nc(~x)(1 − nd(~x)) (40)

z−a(~x) = ng(~x)(1 − nh(~x)) (41)

where the bits c, d, g, h must by chosen so momentum is conserved

êc − êd + êg − êh = 0 (42)

as well as be constrained by central-body parallel and perpendicular momentum

exchange conditions

(êc − êd − êg + êh) · ~r = 2∆p (43)

(êc − êd − êg + êh) × ~r = 0, (44)

where ∆p is the momentum change per site due to the long-range interaction.

In (40) and (41) the difference, over our previous example of the bounce-back

orbit, is the possibility of having two-photons emitted at a single site.

To be explicit, for the two-dimensional triangular lattice, we can satisfy (42),

(43), and (44) by choosing the indices c, d, g, h as follows:

c = a − 2 (45)

d = a − 1 (46)
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g = −c (47)

h = −d. (48)

An example of this choice of indices is illustrated in figure 5c. Then the emission

rule, (40) and (41), is simply

za(~x) = na−2(~x)(1 − na−1(~x)) (49)

Since the kicking of the photons is the same in this example as in the previous

one, (33) still holds

z′
a(~x + rêa) = za(~x).

By re-expressing (36) more generally, we can write a local absorption rule

n′
a(~x) = na(~x) + z′

−(a+1)(~x)za+1(~x) − z′
a−1(~x)z−(a−1)(~x) (50)

or more elegantly

n′
a(~x) = na(~x) + Pa+1(~x) − P−a+1(~x). (51)

Substituting in (49) and (33) into (50) and after some manipulation of the

indices, we have a single boolean expression in terms of number variables for a

single long-range interaction step for partition Γr as follows

n′
a(~x) = na(~x) +

na+2(~x + rêa+1)(1 − n−a(~x + rêa+1))na−1(~x)(1 − na(~x)) −

n−a(~x − rêa−1)(1 − na−2(~x − rêa−1))na(~x)(1 − na+1(~x)).

Table 5 gives the local site data for the x-axis partition of a clock-wise orbit.

The particle n4(~x) acts as a kind of spectator is this example, illustrating that
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Table 5: Long-range interaction sequence with two photons emitted at a single
site

labels na(x) zl(x) zr(x) na(x′) zl(x′) zr(x′)
events 010010 0 0 000010 0 0
emit 010010 1 1 000010 1 0
kick 010010 1 0 000010 0 1
absorb 001010 0 0 000001 0 0

Table 6: Long-range interaction sequence with two photons emitted and ab-
sorbed at site x′ in a back-to-back interaction

events na(x) zl(x) zr(x) na(x′) zl(x′) zr(x′) na(x′′) zl(x′′) zr(x′′)
initial 010000 0 0 010010 0 0 000010 0 0
emit 010000 0 1 010010 1 1 000010 1 0
kick 010000 1 0 010010 1 1 000010 0 1
absorb 001000 0 0 001001 0 0 000001 0 0

two photons can be emitted from a single site. It is also possible to have two

photons absorbed at a single site. Let us consider a back-to-back interaction over

three sites. Suppose there are particles at sites ~x = 0, ~x′ = r̂i, and ~x′′ = 2r̂i.

Table 6 gives the site data for these sites were there are two photons emitted

and absorbed at ~x′ in the middle location.

The minimal model using only a attractive interactions models a fluid with

liquid and gas phases at zero temperature. Fiqure 6 shows the time evolution of

the phase separation process in this case at a density d = 0.07 and interaction

range r = 6l and illustrates the type of physical simulation that can be achieved

with the simplest long-range lattice-gas algorithm.
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Figure 6: Time evolution of a liquid-gas phase separation for a lattice-gas with long range
attractive interactions at range r = 6 on a 1024 × 1024 lattice starting with a uniformly
random configuration of density d = 0.07.

24



aµ+1 a†
µ 

a†
µ′+3 

r 

-r 

aµ 
a†

µ+1 

a†
µ′+4 

aµ′+3 

aµ+1 a†
µ 

a†
µ′+3 

aµ′+4 

a†
µ+1 

a†
µ′+4 

aµ′+3 

    a → a† 

         −r →
 r 

   
   

 r
 →

 −
r 

    a† → a 

aµ′+4 

aµ 

Figure 7: Examples of two-body finite impact parameter collisions along the
r0-direction. The four terms of interaction Hamiltonian for |∆p| = 1. Dashed
arrows depict input states and black arrows depict output states.
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10 Symmetries in Long Range Interactions

For the case of an attractive interaction as mentioned earlier, we would expect

that there exists a bound state in which two particles orbit one another, for

example the clockwise orbit shown in figure 5c. The range of the interaction is

r. This hexagonal orbit is also shown in the bottom-right corner of figure 7. In

this figure the hexagon’s radius is also labeled as r and should not be confused

with the interaction range which is the hexagon’s diameter. Simlarly a counter-

clockwise orbit is possible, see the top-left corner of figure 7. A time-reversal

invariance exists between these two cases with respect to conjugation and parity

operations as depicted in figure 7.

These diagrams describe the possible 2-body collisions that can be so gener-

ated, including repulsive interactions. This logical correspondence between the

different type of 2-body interactions, allows one to achieve a more efficient im-

plementation of a long-range lattice-gas algorithm than what we have achieved

on the CAM-8 since we have not used this form of logical economy. Further-

more, there is a correspondance property for r = 0, the situation reduces to the

2-body collisions in the FHP lattice-gas 2.

The long range interactions considered here have the following properties

which simplify a computational implementation: 1) there exists only parallel

momentum exchange, a restriction for modelling central body forces; 2) the

interaction acts only along the principal lattice directions; 3) there exists time-
2For r = 0, the |∆p| = 1 interactions reduce to a rotation of the states, R(π

3 ) and R( 2π
3 );

and the |∆p| = 2 interactions reduce to the identity operation.
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reversal invariance with respect a conjugation and parity operations; and 4) a

bias to the interactions can be assigned by coupling to heat-bath states. In our

previous examples, the bounce-back and clockwise orbits, we discussed proper-

ties 1 and 2. In this section we have discussed property 3. We have discussed

property 4 elsewhere [9].

11 Central-Body Interaction Neighborhood and
2D Crystallization

(R , -2R) 

(D , -D) 

(2R , -R) 

(D , 0) 

(R , R) 

(0 , D) 

(-R , -2R) 

(-D , D) 
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y 

Figure 8: Twelve neighbors on a triangular lattice that can participate in long-range central-
body interactions. Interaction range D = 7 is depicted, where R = D√

3
' 4 to within

1.03 percent error. Computer memory space coordinates (x, y) are given adjacent to each
neighboring site.

In the previous two sections we illustrated two examples of the long-range in-
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teractions, the bounce-back and clockwise orbit on a two-dimensional triangular

lattice. In general, the long-range interaction step will involve many partitions,

both attractive and repulsive interactions, and multiple ranges. In our CAM-8

implementation of a long-range lattice-gas with central-body interactions, we

actually use 12 neighbors in two-dimensions, see figure 8. The triangular lat-

tice is superposed over a square lattice, which appears rhomboidal in the figure.

The square lattice is often used for embedding the site data into computer mem-

ory, which is rectilinear. This kind of embedding is the simplest and used for

simulations that possess periodic boundary conditions. The reason for using 12

neighbors is to try to achieve a higher degree of local symmetry. In doing molec-

ular dynamics modeling with a multi-long-range lattice-gas, we have found that

12 neighbors are necessary to recover macroscopic isotropy. In particular, 12

neighbors are necessary to have the emergent crystalline solid be able to freely

rotate in space. A mean-field analysis of the latttice-gas crystallization method

has been presented elsewhere [10]. Figure 8 shows a ring of range 7 lattice

spacings.

To implement the crystallization algorithm, we use up to eight ranges in

two-dimensions. That is, eight rings of the type shown in figure 8 for a total of

96 neighbors. Half the rings are used for attractive interactions and the other

half are used for repulsive interactions. Typically, the inner rings are attrac-

tive, the middle rings are repulsive, and the outer rings are again attractive.

Since four photon bits are used in our implementation, and since each ring is

either attractive or repulsive, two rings are affected by a simultaneous parti-
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tioning of the space. For the attractive interaction, there are 5 type of orbits:

bounce-back with ∆p = 2, clockwise and counter-clockwise with ∆p = 1, and

clockwise and counter-clockwise with ∆p =
√

3. Consequently, there are 5 types

of repulsive interactions, which are just the conjugates of the 5 attractive ones.

Since there are 3 partition directions for a triangular lattice, it takes 5*3=15

partitions of the space to completely update an attractive ring and a repulsive

ring simultaneously. To compute 8 rings therefore takes 4*15=60 scans of the

space. Therefore, since the local collisions require a single scan, it takes a total

of 61 scans to complete one time step.

A two dimensional example using 6 interaction ranges, with an underlying

512×512 lattice, of this time-dependent crystallization process is given in figure 9

and illustrates the type of molecular dynamics simulation that can be achieved

with a more complex long-range lattice-gas algorithm. The resulting crystal

is in a hexagonal-close-pack configuration since we have strived to make the

coarse-grained interatomic potential be radially symmetric. This long-range

lattice-gas model had six interaction ranges: r = −2 ,−7, 19, 21, −24, −26.

Here the negative sign preceding the range denotes an attractive interaction at

that range.

12 Conclusion

Although the lattice-gas molecular dynamics algorithm, described above, re-

quires 61 scan, which is quite a lot of scans, this implementation only requires

10 bits of local site data. Six bits are used for the momentum states and 4 bits
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Figure 9: Time evolution of crystallization in a 2-dimensional lattice-gas with multiple fixed-
range 2-body interactions. The resulting crystal is in a hexagonal-close-pack configuration
since the coarse-grained interatomic potential is radially symmetric. The underlying lattice is
512 × 512. Started with a uniformly random configuration at d = 0.1. Twelve directions are
used for long-range momentum exchanges. Grain boundaries and defects are observed during
the early stages of the crystal formation.
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for messenger states, which means that only 1K byte is needed to store a long-

range rule. Since the CAM-8 uses a 16-bit word, there still remains 6 bits of

unused local data. We use these remaining bits to hold a table look-up address.

That is, since the size of the CAM-8 look-up table static random access memory

(SRAM) is 64K bytes, and our long-range rule only requires 1K bytes, we can

store up to 64 long-range rules into CAM-8’s SRAM memory. Since our molecu-

lar dynamics algorithm decomposes into 61 applications of the long-range rules,

it is now clear why we have chosen to use up to eight ranges. Although the de-

scription of our implementation may sound complicated, in fact from a software

development point-of-view it was the most direct and most simple. We have

traded off time to save memory. Yet the well-known principle of computer sci-

ence that one can save much time at the expense of using more memory applies

to our algorithm. So optimizations of our algorithm can be made, particularly

concerning trading off an increase of local site data for a decrease in the number

of needed scans. Clearly, the molecular dynamics algorithms would be signifi-

cantly sped-up if it were implemented say on a 64-bit architecture. Of coarse

in this case, computation by table look-up would be inappropriate. However

by making use of lattice isometries and rule conjugation, the necessary logic

is actually quite small, as evidenced for example by (37) or (52). Therefore,

a programmable logic method of computation should be better than the table

look-up method of computation currently in use in the CAM-8 for this kind of

lattice-gas algorithm.
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